

Home Search Collections Journals About Contact us My IOPscience

Gauge transformation and bi-Hamiltonian structure of finite-dimensional integrable system reduced from a soliton equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1991 J. Phys. A: Math. Gen. 24 L11 (http://iopscience.iop.org/0305-4470/24/1/004) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 10:11

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Gauge transformation and bi-Hamiltonian structure of a finite-dimensional integrable system reduced from a soliton equation

Yunbo Zeng

Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 26 October 1990

Abstract. We present a method for using a gauge transformation to construct a bi-Hamiltonian structure of a finite-dimensional integrable Hamiltonian system reduced from a soliton equation. This is used to construct the bi-Hamiltonian structure for two systems which are related to the second-order polynomial spectral problem and its modified spectral problem, respectively.

Some finite-dimensional integrable Hamiltonian systems have been shown to possess bi-Hamiltonian structures (see, for example, [1-4]). One common way of constructing a bi-Hamiltonian structure is to use the map between two integrable Hamiltonian systems.

In a number of recent papers [5-8], we developed a straightforward way to obtain a hierarchy of finite-dimensional integrable Hamiltonian systems from a hierarchy of integrable nonlinear evolution equations. By restricting the phase space to the invariant subspace of the recursion operator, a constraint on potential can be found and the associated Lax pair under this constraint become finite-dimensional integrable and commuting Hamiltonian systems. On the other hand, there exist gauge transformations between some spectral problems. Thus it is natural to look for a method of constructing the bi-Hamiltonian structure for these kinds of finite-dimensional integrable Hamiltonian systems by using the gauge transformation. We illustrate these ideas by constructing a bi-Hamiltonian structure for the finite-dimensional integrable Hamiltonian systems related to the second-order polynomial spectral problem and its modified spectral problem, respectively.

For the second-order polynomial spectral problem

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}_x = \begin{pmatrix} 0 & 1 \\ \lambda^m - \sum_{i=0}^{m-1} \lambda^i u_i & 0 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$
(1)

the associated evolution equations given in [9] can be rewritten as [8]

$$u_{i_{n}} = DL^{n}u$$
(2)
where $D = \partial/\partial x$, $DD^{-1} = D^{-1}D = 1$, $u = (u_{0}, \dots, u_{m-1})$,

$$L = \begin{pmatrix} 0 & \dots & 0 & J_{0} \\ 1 & \dots & 0 & J_{1} \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & J_{m-1} \end{pmatrix}$$

$$J_{0} = \frac{1}{2}D^{2} + u_{0} - \frac{1}{2}D^{-1}u_{0x} \qquad J_{i} = u_{i} - \frac{1}{2}D^{-1}u_{ix} \qquad i = 1, \dots, m-1.$$

0305-4470/91/010011+06\$03.50 © 1991 IOP Publishing Ltd

For distinct λ_j , we now consider the following system

$$\phi_{1jx} = \phi_{2j}$$

$$\phi_{2jx} = \left(\lambda_j^m - \sum_{i=0}^{m-1} \lambda_j^i u_i\right) \phi_{1j} \qquad j = 1, \dots, N.$$
(3)

By restricting u to the invariant subspace of the recursion operator L, a constraint on u is found as follows in [8]

$$u_{0} = \langle \Phi_{1}, \Phi_{1} \rangle + C$$

$$u_{m-k} = \sum_{i=1}^{k} (-1)^{i-1} \frac{(i+1)}{2^{i}} \sum_{l_{1}+...+l_{i}=k-i} \langle \Lambda^{l_{i}} \Phi_{1}, \Phi_{1} \rangle ... \langle \Lambda^{l_{i}} \Phi_{1}, \Phi_{1} \rangle$$

$$k = 1, ..., m-1$$
(4b)

where C is a constant; hereafter $l_1 \ge 0, \ldots, l_i \ge 0$, $\Phi_1 = (\phi_{11}, \ldots, \phi_{1N})^T$, $\Phi_2 = (\phi_{21}, \ldots, \phi_{2N})^T$, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_N)$, $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{R}^N . Under this constraint on u, (3) becomes a finite-dimensional integrable Hamiltonian system [8]

$$\phi_{1jx} = \frac{\partial H_1}{\partial \phi_{2j}} \qquad \phi_{2jx} = -\frac{\partial H_1}{\partial \Phi_1} \tag{5a}$$

with

$$H_{1} = \frac{1}{2} \langle \Phi_{2}, \Phi_{2} \rangle + \sum_{i=0}^{m} \left(-\frac{1}{2} \right)^{i+1} \sum_{l_{1}+\ldots+l_{i+1}=m-i} \langle \Lambda^{l_{1}} \Phi_{1}, \Phi_{1} \rangle \dots \langle \Lambda^{l_{i+1}} \Phi_{1}, \Phi_{1} \rangle + \frac{1}{2} C \langle \Phi_{1}, \Phi_{1} \rangle.$$
(5b)

The integrals of the motion in involution for (5a) are given by

$$F_{k} = \frac{1}{2} \langle \Lambda^{k-1} \Phi_{2}, \Phi_{2} \rangle + \sum_{i=0}^{m} (-\frac{1}{2})^{i+1} \sum_{l_{1}+\ldots+l_{i+1}=m-i} \langle \Lambda^{l_{1}} \Phi_{1}, \Phi_{1} \rangle \dots \langle \Lambda^{l_{i}} \Phi_{1}, \Phi_{1} \rangle$$

$$\times \langle \Lambda^{l_{i+1}+k-1} \Phi_{1}, \Phi_{1} \rangle + \frac{1}{4} \sum_{j=0}^{k-2} [\langle \Lambda^{j} \Phi_{1}, \Phi_{1} \rangle \langle \Lambda^{k-2-j} \Phi_{2}, \Phi_{2} \rangle$$

$$- \langle \Lambda^{j} \Phi_{1}, \Phi_{2} \rangle \langle \Lambda^{k-2-j} \Phi_{1}, \Phi_{2} \rangle] + \frac{1}{2} C \langle \Lambda^{k-1} \Phi_{1}, \Phi_{1} \rangle \qquad k = 1, 2, \dots$$
(6)

The modified spectral problem for (1) is of the form [9]

$$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}_x = \begin{pmatrix} v_0 & \lambda \\ \lambda^{m-1} - \sum_{i=1}^{m-1} \lambda^{i-1} v_i & -v_0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$
(7)

with $v = (v_0, \ldots, v_{m-1})$,

$$u_0 = -v_{0x} - v_0^2$$
 $v_i = u_i$ $i = 1, ..., m-1.$ (8)

From (2) and the Miura transformation (8), it is easy to obtain the evolution equations associated with (7):

$$v_{t_n} = D\tilde{L}^n v \tag{9}$$

with

$$\tilde{L} = \begin{pmatrix} 0 & 0 & \dots & 0 & \tilde{J}_{0} \\ -D - 2D^{-1}v_{0}D & 0 & \dots & 0 & \tilde{J}_{1} \\ 0 & 1 & \dots & 0 & \tilde{J}_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \tilde{J}_{m-1} \end{pmatrix}$$

$$\tilde{J}_{0} = -\frac{1}{4}D + \frac{1}{2}v_{0} \qquad \tilde{J}_{i} = v_{i} - \frac{1}{2}D^{-1}v_{ix} \qquad i = 1, \dots, m-1.$$

Throughout the letter no boundary condition on u and v is imposed. Firstly we want to reduce an integrable Hamiltonian system from (7) by using the method in [6].

Consider the system

$$\psi_{1jx} = v_0 \psi_{1j} + \lambda_j \psi_{2j}$$

$$\psi_{2jx} = \lambda_j^{m-1} \psi_{1j} - \sum_{i=1}^{m-1} \lambda_j^{i-1} v_i \psi_{1j} - v_0 \psi_{2j} \qquad j = 1, \dots, N.$$
(10)

It is easy to verify that if ψ_{1j} and ψ_{2j} satisfy (10), we have

$$\tilde{L}A_j = \lambda_j A_j + \sum_{i=2}^m \beta_i^{(j)} e_i \qquad j = 1, \dots, N$$
(11)

where $\beta_i^{(j)}$ are integral constants, $e_1 = (1, 0, ..., 0)^T, ..., e_m = (0, ..., 0, 1)^T$,

$$A_{j} = (A_{j1}, \dots, A_{jm})^{T}$$

$$A_{j1} = -\frac{1}{2}\psi_{1j}\psi_{2j}$$

$$A_{jk} = \lambda_{j}^{m-k}\psi_{1j}^{2} - \sum_{i=0}^{m-k-1}\lambda_{j}^{i}\tilde{J}_{k+1}\psi_{1j}^{2} \qquad k = 2, \dots, m-1$$

$$A_{jm} = \psi_{1j}^{2}.$$

Notice that

$$\tilde{L}\sum_{i=1}^{m} \beta_{i}^{(j)} e_{i} = \sum_{i=2}^{m-1} \beta_{i}^{(j)} e_{i+1} + \frac{1}{2} \beta_{m}^{(j)}.$$
(12)

If we take $(C_1 \text{ is a constant})$

$$v = \sum_{j=1}^{N} A_j + C_1 e_1$$
(13)

we find from (11) and (12) that the linear space spanned by $\{A_1, \ldots, A_N, e_1, \ldots, e_m\}$ is an invariant subspace of \tilde{L} . This property enables us to obtain the results for system (10) analogous to the theorems in [8]. However, we omit them here.

In a similar manner to [8], (13) leads to the following constraint on v:

$$v_0 = -\frac{1}{2} \langle \Psi_1, \Psi_2 \rangle + C_1 \tag{14a}$$

$$v_{m-k} = \sum_{i=1}^{k} (-1)^{i-1} \frac{(i+1)}{2^{i}} \sum_{l_{1}+\dots+l_{i}=k-i} \langle \Lambda^{l_{1}} \Psi_{1}, \Psi_{1} \rangle \dots \langle \Lambda^{l_{i}} \Psi_{1}, \Psi_{1} \rangle$$

$$k = 1, \dots, m-1$$
(14b)

L14 Letter to the Editor

where $\Psi_1 = (\psi_{11}, \dots, \psi_{1N})^T$, $\Psi_2 = (\psi_{21}, \dots, \psi_{2N})^T$. Under this constraint on v, (10) becomes a Hamiltonian system

$$\psi_{1jx} = \frac{\partial \tilde{H}_1}{\partial \psi_{2j}} \qquad \psi_{2jx} = -\frac{\partial \tilde{H}_1}{\partial \psi_{1j}}$$
(15*a*)

with

$$\tilde{H}_{1} = -\frac{1}{4} \langle \Psi_{1}, \Psi_{2} \rangle^{2} + C_{1} \langle \Psi_{1}, \Psi_{2} \rangle + \frac{1}{2} \langle \Lambda \Psi_{2}, \Psi_{2} \rangle$$
$$+ \sum_{i=1}^{m} (-\frac{1}{2})^{i} \sum_{l_{1} + \ldots + l_{i} = m-i} \langle \Lambda^{l_{i}} \Psi_{1}, \Psi_{1} \rangle \ldots \langle \Lambda^{l_{i}} \Psi_{1}, \Psi_{1} \rangle.$$
(15b)

We will show later that (15) is an integrable Hamiltonian system.

We find that the gauge transformation

$$\begin{pmatrix} \psi_{1j} \\ \psi_{2j} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\lambda_j^{-1} v_0 & \lambda_j^{-1} \end{pmatrix} \begin{pmatrix} \phi_{1j} \\ \phi_{2j} \end{pmatrix}$$
(16)

transforms the modified spectral problem (10) into the spectral problem (3) for fixed *j*. Under the constraint (14), (16) reads

$$\phi_{1j} = \psi_{1j} \tag{17a}$$

$$\phi_{2j} = \lambda_j \psi_{2j} - \frac{1}{2} \langle \Psi_1, \Psi_2 \rangle \psi_{1j} + C_1 \psi_{1j}$$
(17b)

which together with (4a) and (8) leads to

$$C = \tilde{H}_1 - C_1^2. \tag{17c}$$

Since \tilde{H}_1 is constant of motion for (15), (17c) does not contradict the fact that C is a constant. This implies that the transformation $(\Phi_1, \Phi_2, C) = M(\Psi_1, \Psi_2, C_1)$ defined by (17) gives a map between integrable Hamiltonian systems (5) and (15). Following [3, 4], we must extend the phase space to include the constants C and C_1 . Using the notation $\Phi^T = (\Phi_1^T, \Phi_2^T, C), \Psi^T = (\Psi_1^T, \Psi_2^T, C_1)$, the systems (5) and (15) are similarly extended as follows, respectively:

$$\Phi_x = B_1 \frac{\partial H_1}{\partial \Phi} \tag{5a'}$$

$$\Psi_x = \tilde{B}_1 \frac{\partial \tilde{H}_1}{\partial \Psi} \tag{15a'}$$

where

$$B_1 = \tilde{B}_1 = \begin{pmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Then the Jacobian M' of the map M can be used to construct the second Hamiltonian structure B_2 for the system (5') in the standard way

$$B_2 = M'\tilde{B}_1 M'^T = \begin{pmatrix} 0 & \Lambda - \frac{1}{2}\Phi_1 \otimes \Phi_1 & \Phi_2 \\ -\Lambda + \frac{1}{2}\Phi_1 \otimes \Phi_1 & \frac{1}{2}\Phi_2 \otimes \Phi_1 - \frac{1}{2}\Phi_1 \otimes \Phi_2 & -\partial H_1 / \partial \Phi_1 \\ -\Phi_2^T & (\partial H_1 / \partial \Phi_1)^T & 0 \end{pmatrix}$$
$$H_0 = (\tilde{H}_1 - C_1^2) \circ M^{-1} = C$$

where \otimes denotes tensor product. So the system (5) becomes bi-Hamiltonian:

$$\Phi_x = B_1 \frac{\partial H_1}{\partial \Phi} = B_2 \frac{\partial H_0}{\partial \Phi}.$$
(18)

As a special case, when taking m = 1 for (1), (18) is just the bi-Hamiltonian structure for the Garnier system given in [4].

The chain equation

$$B_1 \frac{\partial H_{k+1}}{\partial \Phi} = B_2 \frac{\partial H_k}{\partial \Phi}$$
(19)

provides an alternative way to generate the integrals of motion for (5). Indeed, starting with $H_0 = C$, we find that H_k generated by (19) are just F_k given by (6). Since C is the Casimir of B_1 , it is easy to show from (19) that F_k are in involution.

Finally we turn to system (15). By substituting (17) into (6), we obtain the integrals of motion for system (15):

$$\tilde{F}_{k+1} = \frac{1}{2} \langle \Lambda^{k+1} \Psi_2, \Psi_2 \rangle - \frac{1}{4} \langle \Psi_2, \Psi_2 \rangle \langle \Lambda^k \Psi_1, \Psi_1 \rangle + C_1 \langle \Lambda^k \Psi_1, \Psi_2 \rangle \\
\times \frac{1}{4} \sum_{j=0}^k \left[\langle \Lambda^j \Psi_1, \Psi_1 \rangle \langle \Lambda^{k-j} \Psi_2, \Psi_2 \rangle - \langle \Lambda^j \Psi_1, \Psi_2 \rangle \langle \Lambda^{k-j} \Psi_1, \Psi_2 \rangle \right] \\
+ \sum_{i=1}^m (-\frac{1}{2})^i \sum_{l_1 + \dots + l_i = m-i} \langle \Lambda^{l_1} \Psi_1, \Psi_1 \rangle \dots \langle \Lambda^{l_{i-1}} \Psi_1, \Psi_1 \rangle \langle \Lambda^{l_i + k} \Psi_1, \Psi_1 \rangle \\
k = 0, 1, \dots$$
(20)

Since the map (17) is inverse, we can compute a second Hamiltonian structure for system (15). Notice that the Jacobian of an inverse function is just the inverse of the Jacobian of the map; we have

$$\tilde{B}_{0} = (M')^{-1} B_{1} ((M')^{-1})^{T} = \begin{pmatrix} 0 & \Lambda^{-1} - (1/2C_{1})\Psi_{2} \otimes \Lambda^{-1}\Psi_{1} & \partial \tilde{H}_{0} / \partial \Psi_{2} \\ -\Lambda^{-1} + (1/2C_{1})\Lambda^{-1}\Psi_{1} \otimes \Psi_{2} & E & -\partial \tilde{H}_{0} / \partial \Psi_{1} \\ -(\partial \tilde{H}_{0} / \partial \Psi_{2})^{T} & (\partial \tilde{H}_{0} / \partial \Psi_{1})^{T} & 0 \end{pmatrix}$$

$$\tilde{H}_{2} = H_{1} \circ M = \tilde{F}_{2} \qquad (21)$$

where

$$E = \frac{1}{C_{1}} \sum_{i=1}^{m-1} (-\frac{1}{2})^{i} i \sum_{l_{1}+\ldots+l_{i}=m-i-1} \langle \Lambda^{l_{1}}\Psi_{1}, \Psi_{1} \rangle \dots \langle \Lambda^{l_{i-1}}\Psi_{1}, \Psi_{1} \rangle$$

$$\times [(\Lambda^{l_{i}}\Psi_{1}) \otimes (\Lambda^{-1}\Psi_{1}) - (\Lambda^{-1}\Psi_{1}) \otimes (\Lambda^{l_{i}}\Psi_{1})]$$

$$\tilde{H}_{0} = \frac{1}{4C_{1}} \langle \Psi_{2}, \Psi_{2} \rangle - \frac{1}{8C_{1}} \langle \Psi_{2}, \Psi_{2} \rangle \langle \Lambda^{-1}\Psi_{1}, \Psi_{1} \rangle + \frac{1}{2} \langle \Lambda^{-1}\Psi_{1}, \Psi_{2} \rangle$$

$$+ \frac{1}{2C_{1}} (1 - \frac{1}{2} \langle \Lambda^{-1}\Psi_{1}, \Psi_{1} \rangle) \sum_{i=1}^{m-1} (-\frac{1}{2})^{i}$$

$$\times \sum_{l_{1}+\ldots+l_{i}=m-i-1} \langle \Lambda^{l_{i}}\Psi_{1}, \Psi_{1} \rangle \dots \langle \Lambda^{l_{i}}\Psi_{1}, \Psi_{1} \rangle.$$

Then (15) becomes the bi-Hamiltonian system

$$\Psi_{x} = \tilde{B}_{1} \frac{\partial \tilde{H}_{1}}{\partial \Psi} = \tilde{B}_{0} \frac{\partial \tilde{H}_{2}}{\partial \Psi}.$$
(22)

Using the chain equation

$$\tilde{B}_1 \frac{\partial}{\partial \Psi} \tilde{H}_k = \tilde{B}_0 \frac{\partial}{\partial \Psi} \tilde{H}_{k+1}$$
(23)

and starting with $\tilde{H}_1 = \tilde{F}_1$, we find $\tilde{H}_k = \tilde{F}_k$. Since $(\tilde{H}_1 - C_1^2)$ is the Casimir of \tilde{B}_0 , (23) can be used to show that \tilde{F}_k are in involution. Distinct λ_j guarantees that $\tilde{F}_1, \ldots, \tilde{F}_N$ are functionally independent. Hence (15) is completely integrable Hamiltonian system in the sense of Liouville.

This work was supported by the Scientific Research Fund of Academy of Sciences of China.

References

- [1] Kupershmidt B A 1985 Asterisque 123
- [2] Ratiu T 1980 Indiana Univ. Math. J. 29 609
- [3] Antonowicz M, Fordy A P and Wojciechowski S R 1987 Phys. Lett. 124A 143
- [4] Antonowicz M and Wojciechowski S R 1990 Constrained flows of integrable PDEs and bi-Hamiltonian structure of Garnier system *Phys. Lett.* A to appear
- [5] Yunbo Zeng and Yishen Li 1989 J. Math. Phys. 30 1679
- [6] Yunbo Zeng and Yishen Li 1990 J. Phys. A: Math. Gen. 23 L89
- [7] Yunbo Zeng, Taixi Xu and Yishen Li 1990 Phys. Lett. 144A 75
- [8] Yunbo Zeng and Yishen Li 1990 Integrable Hamiltonian systems related to polynomial eigenvalue problem J. Math. Phys. 31 11
- [9] Fordy A P 1991 Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries Proc. IWA Workshop Applications of Solitons ed P J Olver and D H Sattinger, to be published