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LE'ITER TO THE EDITOR 

Gauge transformation and bi-Hamiltonian structure of a 
finite-dimensional integrable system reduced from a 
soliton equation 

Yunbo Zeng 
Depanment of Mathematics, University of Science and Technology of China, Hefei 230026, 
China 

Received 26 October 1990 

Abstract. We present a method for using a gauge transformation Io construct a bi-Hamil- 
tonian ~ t r u c t ~ r e  of a finite-dimensional integrable Hamiltonian system reduced from a 
soliton equation. This is used to construct the bi-Hamiltonian ~ t r ~ c t u r e  far two systems 
which are related to the second-order polynomial spectral problem and its modified spectral 
problem, respectively. 

Some finite-dimensional integrable Hamiltonian systems have been shown to possess 
bi-Hamiltonian structures (see, for example, [ 1-41). One common way of constructing 
a bi-Hamiltonian structure is to use the map between two integrable Hamiltonian 
systems. 

In a number of recent papers [5-8] ,  we developed a straightforward way to obtain 
a hierarchy of finite-dimensional integrable Hamiltonian systems from a hierarchy of 
integrable nonlinear evolution equations. By restricting the phase space to the invariant 
subspace of the recursion operator, a constraint on potential can be found and the 
associated Lax pair under this constraint become finite-dimensional integrable and 
commuting Hamiltonian systems. On the other hand, there exist gauge transformations 
between some spectral problems. Thus it is natural to look for a method of constructing 
the bi-Hamiltonian structure for these kinds of finite-dimensional integrable Hamil- 
tonian systems by using the gauge transformation. We illustrate these ideas by construct- 
ing a bi-Hamiltonian structure for the finite-dimensional integrable Hamiltonian sys- 
tems related to the second-order polynomial spectral problem and its modified spectral 
problem, respectively. 

For the second-order polynomial spectral problem 

the associated evolution equations given in [9] can be rewritten as [8] 

where D=a/ax, D D - ' = D - ' D = l ,  u = ( u o , .  ..,U,,-,), 

U,,* = DL"u (2) 

0 . . .  0 

L =  [1. : : :  .o. 
0 . .  . 1 J,., 

J , = : D ~ +  u , - ~ D - ' u , ,  J = ui -LD-' 2 Uix i =  1,. . . , m - 1. 
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For distinct A,, we now consider the following system 

@IJX = 42., 
(3) 

m - l  

@ 2 j . y = ( A , 7 -  i=0 1 A ; U , ) @ , ~  j = 1, . . . , N. 

By restricting U to the invariant subspace of the recursion operator L, a constraint on 
U is found as follows in [8] 

U"= ( @ I  7 @J+ c (40) 

k ( i + l )  
= (-l)'-' ~ (All@,,  @,). . 

,=, 2' I , +  + , , = k - ,  

k =  1, ... , m - 1  (4b) 

where C is a constant; hereafter l l a O  ,..., l , > O ,  @ I = ( @ j I  ,..., @*= 
(@,,, . . . , @,,)', A=diag(A,, . . . , A N ) ,  (. , .) is the inner product in RN. Under this 
constraint on U, (3) becomes a finite-dimensional integrable Hamiltonian system [8] 

with 

HI =f(Q2,02)+ ( - $ ) ' + I  1 ( A ' , @ , , @ ~ )  ... ( A ' , + , @ , , @ ~ ) + ~ C ( @ ~ , @ , ) .  ( 5 b )  

The integrals of the motion in involution for ( s a )  are given by 

m 

,=O I,+.. +f,+l=m-, 

m 

F x = i ( A k - ' @ 2 , @ 2 ) +  1 (-i)i" 1 (A1#@,,,  @,). . .(A'*@,, @,) 
i = o  l a +  ...+ I , + ,= , - !  

k -2 

j -a  
x(A'**l+"-'@,,@,)+~ 2 [(A'@,, @ 1 ) ( . 4 - ~ - ' @ 2 , @ 2 )  

- ( A ' C J , , @ ~ ) ( A ~ - ~ - ' @ , ,  @2) ]+~C(Ak- i@l ,@, )  k = l , 2 ,  .... (6) 

The modified spectral problem for (1) is of the form [9] 

with u = ( u o  ,..., U,,-,), 

u0= - U O x  - UO U. I ,  = U. i =  I , .  . . , m -1 .  (8) 2 

From (2) and the Miura transformation (8). it is easy to obtain the evolution equations 
associated with (7): 

U,,, = Di"u (9) 
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with 

[D-2r1u0D 0 o . . .  ::: o j ,  ] 
L =  

... - 
0 ... 1 Jm-,  - 

j 0 -  - -ID+' 4 20" J . =  I 1 2  v.-'D-'v. IX 

Throughout the letter no boundary condition on U and U is imposed. Firstly we want 
to reduce an integrable Hamiltonian system from (7) by using the method in [6]. 

i = I , .  . . , m - l  

Consider the system 

* i j x  = u d i j  + AjJ12j 

It is easy to verify that if and J12, satisfy (lo), we have 
m 

LA, = A,A, + 1 &'e, j = l , .  . . , N (11) 
, = 2  

where PI'' are integral constants, e, = (1,0,. . . , 0lr, .  . . , e,  = (0,. . . , O ,  l ) T ,  

A, = (A,I ,  . . . , A,,)' 

A , I  =-- :*I,**, 

A. =$j2 ~m 11 

Notice that 

If we take (C, is a constant) 

N 

j = l  
u =  Aj+C,e, 

we find from (11) and (12) that the linear space spanned by { A , ,  . . . , A N ,  e , ,  . . . , e , }  
is an invariant subspace of i. This property enables us to obtain the results for system 
(10) analogous to the theorems in [SI. However, we omit them here. 

In a similar manner to [8], (13) leads to the following constraint on v :  

ug= -+PI, Y*) + c, (140) 

z (A'lY>,Y,). . .(A'(Y,, V,) k ( i + l )  
u,-x= (-1)i-l- 

i - l  2' I , +  ...+ l , =k - - i  

k =  1 , .  . . , m - l  
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where 
becomes a Hamiltonian system 

,..., Y2=(J12, ,.... $ 2 N ) T .  Under this constraint on U, (10) 

Jk, J c i ,  
*2jx = - - 

'Jx J * , j  

* =- 

with 

ki,=-a(Yu,,.ly2)2+C~(Y~,YY3+f(AY~ry~) 
m 

+ 1 (-9' 1 ( A ' ~ Y , , Y , ) . .  . (A'JY~,Y,) ,  
I = ,  I , +  ...+ ',=",-I 

We will show later that (15) is an integrable Hamiltonian system. 
We find that the gauge transformation 

transforms the modified spectral problem (10) into the spectral problem (3) for 
fixed j .  Under the constraint (14). (16) reads 

which together with (4a) and (8) leads to 

c = ii, - c:. ( 1 7 4  

Since is constant of motion for (15), (17c)  does not contradict the fact that C is 
a constant. This implies that the transformation (QI, Q 2 ,  C )  = M ( l y , ,  Y2, C , )  defined 
by (17) gives a map between integrable Hamiltonian systems (5) and (15). Following 
[3,4], we must extend the phase space to include the constants C and C , .  Using the 
notation@T=(@:,@:, C ) , Y T = ( Y : , Y : ,  C,),thesystems(5)and(15)aresimilarly 
extended as follows, respectively: 

- Jk, Y , = B , - -  
JY 

(15a') 

where 

Then the Jacobian M' of the map M can be used to construct the second Hamiltonian 
structure B2 for the system (5') in the standard way 

0 

0 A-#'I@@, 
B 2 = M ' E , M t T =  f @ 2 Q @ I - f @ n Q 0 2  -JHt/J@a 

~ ~ = ( k ,  -c:p M - ' =  c 
(JHi /J@,)T 
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where 0 denotes tensor product. So the system ( 5 )  becomes bi-Hamiltonian: 

As a special case, when taking m = 1 for ( l ) ,  (18) is just the bi-Hamiltonian structure 
for the Garnier system given in [4]. 

The chain equation 

provides an alternative way to generate the integrals of motion for (5 ) .  Indeed, starting 
with HO= C, we find that Hk generated by (19) are just Fk given by (6). Since C is 
the Casimir of B,, it is easy to show from (19) that Fk are in involution. 

Finally we turn to system (15) .  By substituting (17) into (6 ) ,  we obtain the integrals 
of motion for system (15): 

Fk+i=%Ak+'*z ,  Y2)-a(Y2,Y2)(AkY~,Y~I)+Ci(AkY,,Y1) 

k=O, 1 , .  . . . (20) 
Since the map (17) is inverse, we can compute a second Hamiltonian structure for 

system (15). Notice that the Jacobian of an inverse function is just the inverse of the 
Jacobian of the map; we have 

E,,= ( M ' ) - ~ B , ( ( M ' ) - ~ ) ~  

1 0 A-'-(l /2C,)Y2@A~'Y, afiO/aY2 
= -A-1+(l/2C,)A~'Yl@Y2 E -afio/a*, 

- ( a f i o / a q 2 ) T  (afioi,/avu,)T 0 

(21) 

( 
fi2 = H,. M = F2 

where 

I,+ ...+ 1,=m-i-, 

Then (15) becomes the bi-Hamiltonian system 
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Using the chain equation 

and starting with fit = PI, y e  find f i k  = pk. Since (2, - C:)  is the Casimir of &, (23) 
can be used to show that Fh are in involution. Distinct Aj guarantees that p,, . . . , pN 
are functionally independent. Hence (15) is completely integrable Hamiltonian system 
in the sense of Liouville. 

This work was supported by the Scientific Research Fund of Academy of Sciences of 
China. 
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