Gauge transformation and bi-Hamiltonian structure of finite-dimensional integrable system reduced from a soliton equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L11
(http://iopscience.iop.org/0305-4470/24/1/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:11

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Gauge transformation and bi-Hamiltonian structure of a finite-dimensional integrable system reduced from a soliton equation 

Yunbo Zeng<br>Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 26 October 1990


#### Abstract

We present a method for using a gauge transformation to construct a bi-Hamiltonian structure of a finite-dimensional integrable Hamiltonian system reduced from a soliton equation. This is used to construct the bi-Hamiltonian structure for two systems which are related to the second-order polynomial spectral problem and its modified spectral problem, respectively.


Some finite-dimensional integrable Hamiltonian systems have been shown to possess bi-Hamiltonian structures (see, for example, [1-4]). One common way of constructing a bi-Hamiltonian structure is to use the map between two integrable Hamiltonian systems.

In a number of recent papers [5-8], we developed a straightforward way to obtain a hierarchy of finite-dimensional integrable Hamiltonian systems from a hierarchy of integrable nonlinear evolution equations. By restricting the phase space to the invariant subspace of the recursion operator, a constraint on potential can be found and the associated Lax pair under this constraint become finite-dimensional integrable and commuting Hamiltonian systems. On the other hand, there exist gauge transformations between some spectral problems. Thus it is natural to look for a method of constructing the bi-Hamiltonian structure for these kinds of finite-dimensional integrable Hamiltonian systems by using the gauge transformation. We illustrate these ideas by constructing a bi-Hamiltonian structure for the finite-dimensional integrable Hamiltonian systems related to the second-order polynomial spectral problem and its modified spectral problem, respectively.

For the second-order polynomial spectral problem

$$
\binom{\phi_{1}}{\phi_{2}}_{x}=\left(\begin{array}{cc}
0 & 1  \tag{1}\\
\lambda^{m}-\sum_{i=0}^{m-1} \lambda^{i} u_{i} & 0
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}
$$

the associated evolution equations given in [9] can be rewritten as [8]

$$
\begin{equation*}
u_{t_{n}}=D L^{n} u \tag{2}
\end{equation*}
$$

where $D=\partial / \partial x, D D^{-1}=D^{-1} D=1, u=\left(u_{0}, \ldots, u_{m-1}\right)$,

$$
\begin{aligned}
L & =\left(\begin{array}{cccc}
0 & \ldots & 0 & J_{0} \\
1 & \ldots & 0 & J_{1} \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & J_{m-1}
\end{array}\right) \\
J_{0} & =\frac{1}{4} D^{2}+u_{0}-\frac{1}{2} D^{-1} u_{0 x} \quad J_{i}=u_{i}-\frac{1}{2} D^{-1} u_{i x} \quad i=1, \ldots, m-1 .
\end{aligned}
$$

For distinct $\lambda_{j}$, we now consider the following system

$$
\begin{align*}
& \phi_{1 j x}=\phi_{2 j}  \tag{3}\\
& \phi_{2 j x}=\left(\lambda_{j}^{m}-\sum_{j=0}^{m-1} \lambda_{j}^{i} u_{i}\right) \phi_{1 j} \quad j=1, \ldots, N .
\end{align*}
$$

By restricting $u$ to the invariant subspace of the recursion operator $L$, a constraint on $u$ is found as follows in [8]
$u_{0}=\left\langle\Phi_{1}, \Phi_{1}\right\rangle+C$

$$
\begin{gather*}
u_{m-k}=\sum_{i=1}^{k}(-1)^{i-1} \frac{(i+1)}{2^{i}} \sum_{t_{1}+\ldots+l_{i}=k-i}\left\langle\Lambda^{\prime} \prime \Phi_{1}, \Phi_{1}\right\rangle \ldots\left\langle\Lambda^{\prime}, \Phi_{1}, \Phi_{1}\right\rangle  \tag{4a}\\
k=1, \ldots, m-1 \tag{4b}
\end{gather*}
$$

where $C$ is a constant; hereafter $l_{1} \geqslant 0, \ldots, l_{i} \geqslant 0, \quad \Phi_{1}=\left(\phi_{11}, \ldots, \phi_{1 N}\right)^{T}, \quad \Phi_{2}=$ $\left(\phi_{21}, \ldots, \phi_{2 N}\right)^{T}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right),\langle\cdot, \cdot\rangle$ is the inner product in $\boldsymbol{R}^{N}$. Under this constraint on $u$, (3) becomes a finite-dimensional integrable Hamiltonian system [8]

$$
\begin{equation*}
\phi_{1 j x}=\frac{\partial H_{1}}{\partial \phi_{2 j}} \quad \phi_{2 j x}=-\frac{\partial H_{1}}{\partial \Phi_{1}} \tag{5a}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{1}=\frac{1}{2}\left\langle\Phi_{2}, \Phi_{2}\right\rangle+\sum_{i=0}^{m}\left(-\frac{1}{2}\right)^{i+1} \sum_{1_{1}+\ldots+t_{i+1}=m-i}\left\langle\Lambda^{\prime} 1 \Phi_{1}, \Phi_{1}\right\rangle \ldots\left\langle\Lambda^{t_{i+1}} \Phi_{1}, \Phi_{1}\right\rangle+\frac{1}{2} C\left\langle\Phi_{1}, \Phi_{1}\right\rangle . \tag{5b}
\end{equation*}
$$

The integrals of the motion in involution for (5a) are given by

$$
\begin{align*}
& F_{k}=\frac{1}{2}\left\langle\Lambda^{k-1} \Phi_{2}\right.\left., \Phi_{2}\right\rangle+\sum_{i=0}^{m}\left(-\frac{1}{2}\right)^{i+1} \sum_{1_{1}+\ldots+l_{i+1}=m-i}\left\langle\Lambda^{\prime} \Phi_{1}, \Phi_{1}\right\rangle \ldots\left\langle\Lambda^{\prime} \Phi_{1}, \Phi_{1}\right\rangle \\
& \times\left\langle\Lambda^{\prime}{ }^{\prime+1}+k-1\right. \\
&\left.\Phi_{1}, \Phi_{1}\right\rangle+\frac{1}{4} \sum_{j=0}^{k-2}\left[\left\langle\Lambda^{j} \Phi_{1}, \Phi_{1}\right\rangle\left\langle\Lambda^{k-2-j} \Phi_{2}, \Phi_{2}\right\rangle\right.  \tag{6}\\
&\left.-\left\langle\Lambda^{j} \Phi_{1}, \Phi_{2}\right\rangle\left\langle\Lambda^{k-2-j} \Phi_{1}, \Phi_{2}\right\rangle\right]+\frac{1}{2} C\left\langle\Lambda^{k-1} \Phi_{1}, \Phi_{1}\right\rangle \quad k=1,2, \ldots
\end{align*}
$$

The modified spectral problem for (1) is of the form [9]

$$
\binom{\psi_{1}}{\psi_{2}}_{x}=\left(\begin{array}{cc}
v_{0} & \lambda  \tag{7}\\
\lambda^{m-1}-\Sigma_{i=1}^{m-1} \lambda^{i-1} v_{i} & -v_{0}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}
$$

with $v=\left(v_{0}, \ldots, v_{m-1}\right)$,

$$
\begin{equation*}
u_{0}=-v_{0 x}-v_{0}^{2} \quad v_{i}=u_{i} \quad i=1, \ldots, m-1 \tag{8}
\end{equation*}
$$

From (2) and the Miura transformation (8), it is easy to obtain the evolution equations associated with (7):

$$
\begin{equation*}
v_{r_{n}}=D \tilde{L}^{n} v \tag{9}
\end{equation*}
$$

with

$$
\begin{aligned}
& \tilde{L}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & \tilde{J}_{0} \\
-D-2 D^{-1} v_{0} D & 0 & \ldots & 0 & \tilde{J}_{1} \\
0 & 1 & \ldots & 0 & \tilde{J}_{2} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & \tilde{J}_{m-1}
\end{array}\right) \\
& \tilde{J}_{0}=-\frac{1}{4} D+\frac{1}{2} v_{0} \quad \tilde{J}_{i}=v_{i}-\frac{1}{2} D^{-1} v_{i x} \quad i=1, \ldots, m-1 .
\end{aligned}
$$

Throughout the letter no boundary condition on $u$ and $v$ is imposed. Firstly we want to reduce an integrable Hamiltonian system from (7) by using the method in [6].

Consider the system

$$
\begin{align*}
& \psi_{1 j x}=v_{0} \psi_{1 j}+\lambda_{j} \psi_{2 j} \\
& \psi_{2 j x}=\lambda_{j}^{m-1} \psi_{1 j}-\sum_{i=1}^{m-1} \lambda_{j}^{i-1} v_{i} \psi_{1 j}-v_{0} \psi_{2 j} \quad j=1, \ldots, N \tag{10}
\end{align*}
$$

It is easy to verify that if $\psi_{1 j}$ and $\psi_{2 j}$ satisfy (10), we have

$$
\begin{equation*}
\tilde{L} A_{j}=\lambda_{j} A_{j}+\sum_{i=2}^{m} \beta_{i}^{(j)} e_{i} \quad j=1, \ldots, N \tag{11}
\end{equation*}
$$

where $\beta_{i}^{(j)}$ are integral constants, $e_{1}=(1,0, \ldots, 0)^{T}, \ldots, e_{m}=(0, \ldots, 0,1)^{T}$,

$$
\begin{aligned}
& A_{j}=\left(A_{j 1}, \ldots, A_{j m}\right)^{T} \\
& \boldsymbol{A}_{j 1}=-\frac{1}{2} \psi_{1 j} \psi_{2 j} \\
& \boldsymbol{A}_{j k}=\lambda_{j}^{m-k} \psi_{1 j}^{2}-\sum_{i=0}^{m-k-1} \lambda_{j}^{i} \tilde{J}_{k+1} \psi_{1 j}^{2} \quad k=2, \ldots, m-1 \\
& \boldsymbol{A}_{j m}=\psi_{1 j}^{2}
\end{aligned}
$$

Notice that

$$
\begin{equation*}
\tilde{L} \sum_{i=1}^{m} \beta_{i}^{(j)} e_{i}=\sum_{i=2}^{m-1} \beta_{i}^{(j)} e_{i+1}+\frac{1}{2} \beta_{m}^{(j)} \tag{12}
\end{equation*}
$$

If we take ( $C_{1}$ is a constant)

$$
\begin{equation*}
v=\sum_{j=1}^{N} A_{j}+C_{1} e_{1} \tag{13}
\end{equation*}
$$

we find from (11) and (12) that the linear space spanned by $\left\{A_{1}, \ldots, A_{N}, e_{1}, \ldots, e_{m}\right\}$ is an invariant subspace of $\tilde{L}$. This property enables us to obtain the results for system (10) analogous to the theorems in [8]. However, we omit them here.

In a similar manner to [8], (13) leads to the following constraint on $v$ :

$$
\begin{gather*}
v_{0}=-\frac{1}{2}\left\langle\Psi_{1}, \Psi_{2}\right\rangle+C_{1}  \tag{14a}\\
v_{m-k}=\sum_{i=1}^{k}(-1)^{i-1} \frac{(i+1)}{2^{i}} \sum_{t_{1}+\ldots+t_{i}=k-i}\left\langle\Lambda^{\prime} \Psi_{1}, \Psi_{1}\right\rangle \ldots\left\langle\Lambda^{t_{i}} \Psi_{1}, \Psi_{1}\right\rangle \\
k=1, \ldots, m-1 \tag{14b}
\end{gather*}
$$

where $\Psi_{1}=\left(\psi_{11}, \ldots, \psi_{1 N}\right)^{T}, \Psi_{2}=\left(\psi_{21}, \ldots, \psi_{2 N}\right)^{T}$. Under this constraint on $v,(10)$ becomes a Hamiltonian system

$$
\begin{equation*}
\psi_{1 j x}=\frac{\partial \tilde{H}_{1}}{\partial \psi_{2 j}} \quad \psi_{2 j x}=-\frac{\partial \tilde{H}_{1}}{\partial \psi_{1 j}} \tag{15a}
\end{equation*}
$$

with

$$
\begin{align*}
\tilde{H}_{1}=-\frac{1}{4}\left\langle\Psi_{1},\right. & \left.\Psi_{2}\right\rangle^{2}+C_{1}\left\langle\Psi_{1}, \Psi_{2}\right\rangle+\frac{1}{2}\left\langle\Lambda \Psi_{2}, \Psi_{2}\right\rangle \\
& +\sum_{i=1}^{m}\left(-\frac{1}{2}\right)^{i} \sum_{l_{1}+\ldots+l_{1}=m-i}\left\langle\Lambda^{\prime} \Psi_{1}, \Psi_{1}\right\rangle \ldots\left\langle\Lambda^{\prime}, \Psi_{1}, \Psi_{1}\right\rangle . \tag{15b}
\end{align*}
$$

We will show later that (15) is an integrable Hamiltonian system.
We find that the gauge transformation

$$
\binom{\psi_{1 j}}{\psi_{2 j}}=\left(\begin{array}{cc}
1 & 0  \tag{16}\\
-\lambda_{j}^{-1} v_{0} & \lambda_{j}^{-1}
\end{array}\right)\binom{\phi_{1 j}}{\phi_{2 j}}
$$

transforms the modified spectral problem (10) into the spectral problem (3) for fixed $j$. Under the constraint (14), (16) reads

$$
\begin{align*}
& \phi_{1 j}=\psi_{1 j}  \tag{17a}\\
& \phi_{2 j}=\lambda_{j} \psi_{2 j}-\frac{1}{2}\left\langle\Psi_{1}, \Psi_{2}\right\rangle \psi_{1 j}+C_{1} \psi_{1 j} \tag{17b}
\end{align*}
$$

which together with (4a) and (8) leads to

$$
\begin{equation*}
C=\tilde{H}_{1}-C_{1}^{2} . \tag{17c}
\end{equation*}
$$

Since $\tilde{H}_{1}$ is constant of motion for (15), (17c) does not contradict the fact that $C$ is a constant. This implies that the transformation $\left(\Phi_{1}, \Phi_{2}, C\right)=M\left(\Psi_{1}, \Psi_{2}, C_{1}\right)$ defined by (17) gives a map between integrable Hamiltonian systems (5) and (15). Following [3,4], we must extend the phase space to include the constants $C$ and $C_{1}$. Using the notation $\Phi^{T}=\left(\Phi_{1}^{T}, \Phi_{2}^{T}, C\right), \Psi^{T}=\left(\Psi_{1}^{T}, \Psi_{2}^{T}, C_{1}\right)$, the systems (5) and (15) are similarly extended as follows, respectively:

$$
\begin{align*}
& \Phi_{x}=B_{1} \frac{\partial H_{1}}{\partial \Phi} \\
& \Psi_{x}=\tilde{B}_{1} \frac{\partial \tilde{H}_{1}}{\partial \Psi}
\end{align*}
$$

where

$$
B_{1}=\tilde{B}_{1}=\left(\begin{array}{ccc}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Then the Jacobian $M^{\prime}$ of the map $M$ can be used to construct the second Hamiltonian structure $B_{2}$ for the system ( $5^{\prime}$ ) in the standard way

$$
\begin{aligned}
& B_{2}=M^{\prime} \tilde{B}_{1} M^{\prime T}=\left(\begin{array}{ccc}
0 & \Lambda-\frac{1}{2} \Phi_{1} \otimes \Phi_{1} & \Phi_{2} \\
-\Lambda+\frac{1}{2} \Phi_{1} \otimes \Phi_{1} & \frac{1}{2} \Phi_{2} \otimes \Phi_{1}-\frac{1}{2} \Phi_{1} \otimes \Phi_{2} & -\partial H_{1} / \partial \Phi_{1} \\
-\Phi_{2}^{T} & \left(\partial H_{1} / \partial \Phi_{1}\right)^{T} & 0
\end{array}\right) \\
& H_{0}=\left(\tilde{H}_{1}-C_{1}^{2}\right) \circ M^{-1}=C
\end{aligned}
$$

where $\otimes$ denotes tensor product. So the system (5) becomes bi-Hamiltonian:

$$
\begin{equation*}
\Phi_{x}=B_{1} \frac{\partial H_{1}}{\partial \Phi}=B_{2} \frac{\partial H_{0}}{\partial \Phi} \tag{18}
\end{equation*}
$$

As a special case, when taking $m=1$ for (1), (18) is just the bi-Hamiltonian structure for the Garnier system given in [4].

The chain equation

$$
\begin{equation*}
B_{1} \frac{\partial H_{k+1}}{\partial \Phi}=B_{2} \frac{\partial H_{k}}{\partial \Phi} \tag{19}
\end{equation*}
$$

provides an alternative way to generate the integrals of motion for (5). Indeed, starting with $H_{0}=C$, we find that $H_{k}$ generated by (19) are just $F_{k}$ given by (6). Since $C$ is the Casimir of $B_{1}$, it is easy to show from (19) that $F_{k}$ are in involution.

Finally we turn to system (15). By substituting (17) into (6), we obtain the integrals of motion for system (15):

$$
\begin{align*}
\tilde{F}_{k+1}=\frac{1}{2}\left\langle\Lambda^{k+1}\right. & \left.\Psi_{2}, \Psi_{2}\right\rangle-\frac{1}{4}\left\langle\Psi_{2}, \Psi_{2}\right\rangle\left\langle\Lambda^{k} \Psi_{1}, \Psi_{1}\right\rangle+C_{1}\left\langle\Lambda^{k} \Psi_{1}, \Psi_{2}\right\rangle \\
& \times \frac{1}{4} \sum_{j=0}^{k}\left[\left\langle\Lambda^{j} \Psi_{1}, \Psi_{1}\right\rangle\left\langle\Lambda^{k-j} \Psi_{2}, \Psi_{2}\right\rangle-\left\langle\Lambda^{j} \Psi_{1}, \Psi_{2}\right\rangle\left\langle\Lambda^{k-j} \Psi_{1}, \Psi_{2}\right\rangle\right] \\
& +\sum_{i=1}^{m}\left(-\frac{1}{2}\right)^{i} \sum_{t_{1}+\ldots+l_{1}=m-i}\left\langle\Lambda^{l^{\prime}} \Psi_{1}, \Psi_{1}\right\rangle \ldots\left\langle\Lambda^{t_{i-1}} \Psi_{1}, \Psi_{1}\right\rangle\left\langle\Lambda^{l+k} \Psi_{1}, \Psi_{1}\right\rangle \\
& k=0,1, \ldots . \tag{20}
\end{align*}
$$

Since the map (17) is inverse, we can compute a second Hamiltonian structure for system (15). Notice that the Jacobian of an inverse function is just the inverse of the Jacobian of the map; we have

$$
\begin{align*}
\tilde{B}_{0}=\left(M^{\prime}\right)^{-1} & B_{1}\left(\left(M^{\prime}\right)^{-1}\right)^{T} \\
= & \left(\begin{array}{ccc}
0 & \Lambda^{-1}-\left(1 / 2 C_{1}\right) \Psi_{2} \otimes \Lambda^{-1} \Psi_{1} & \partial \tilde{H}_{0} / \partial \Psi_{2} \\
-\Lambda^{-1}+\left(1 / 2 C_{1}\right) \Lambda^{-1} \Psi_{1} \otimes \Psi_{2} & E & -\partial \tilde{H}_{0} / \partial \Psi_{1} \\
-\left(\partial \tilde{H}_{0} / \partial \Psi_{2}\right)^{T} & \left(\partial \tilde{H}_{0} / \partial \Psi_{1}\right)^{T} & 0
\end{array}\right) \\
\tilde{H}_{2}=H_{1} \circ M=\tilde{F}_{2} & \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& E=\frac{1}{C_{1}} \sum_{i=1}^{m-1}\left(-\frac{1}{2}\right)^{i} i \sum_{t_{1}+\ldots+l_{i}=m-i-1}\left\langle\Lambda^{t^{\prime}} \Psi_{1}, \Psi_{1}\right\rangle \ldots\left\langle\Lambda^{t_{1-1}} \Psi_{1}, \Psi_{1}\right\rangle \\
& \times\left[\left(\Lambda^{\prime} \Psi_{1}\right) \otimes\left(\Lambda^{-1} \Psi_{1}\right)-\left(\Lambda^{-1} \Psi_{1}\right) \otimes\left(\Lambda^{\prime} \Psi_{1}\right)\right] \\
& \tilde{H}_{0}=\frac{1}{4 C_{1}}\left\langle\Psi_{2},\right.\left.\Psi_{2}\right\rangle-\frac{1}{8 C_{1}}\left\langle\Psi_{2}, \Psi_{2}\right\rangle\left\langle\Lambda^{-1} \Psi_{1}, \Psi_{1}\right\rangle+\frac{1}{2}\left\langle\Lambda^{-1} \Psi_{1}, \Psi_{2}\right\rangle \\
&+\frac{1}{2 C_{1}}\left(1-\frac{1}{2}\left\langle\Lambda^{-1} \Psi_{1}, \Psi_{1}\right\rangle\right) \sum_{i=1}^{m-1}\left(-\frac{1}{2}\right)^{i} \\
& \times \sum_{t_{1}+\ldots+t_{i}=m-i-1}\left\langle\Lambda^{\prime} \Psi_{1}, \Psi_{1}\right\rangle \ldots\left\langle\Lambda^{\prime} \Psi_{1}, \Psi_{1}\right\rangle .
\end{aligned}
$$

Then (15) becomes the bi-Hamiltonian system

$$
\begin{equation*}
\Psi_{x}=\tilde{B}_{1} \frac{\partial \tilde{H}_{1}}{\partial \Psi}=\tilde{B}_{0} \frac{\partial \tilde{H}_{2}}{\partial \Psi} \tag{22}
\end{equation*}
$$

Using the chain equation

$$
\begin{equation*}
\tilde{B}_{1} \frac{\partial}{\partial \Psi} \tilde{H}_{k}=\tilde{B}_{0} \frac{\partial}{\partial \Psi} \tilde{H}_{k+1} \tag{23}
\end{equation*}
$$

and starting with $\tilde{H}_{1}=\tilde{F}_{1}$, we find $\tilde{H}_{k}=\tilde{F}_{k}$. Since $\left(\tilde{H}_{1}-C_{1}^{2}\right)$ is the Casimir of $\tilde{B}_{0}$, (23) can be used to show that $\tilde{F}_{k}$ are in involution. Distinct $\lambda_{j}$ guarantees that $\tilde{F}_{1}, \ldots, \tilde{F}_{N}$ are functionally independent. Hence (15) is completely integrable Hamiltonian system in the sense of Liouville.

This work was supported by the Scientific Research Fund of Academy of Sciences of China.

## References

[1] Kupershmidt B A 1985 Asterisque 123
[2] Ratiu T 1980 Indiana Univ. Math. J. 29609
[3] Antonowicz M, Fordy A P and Wojciechowski S R 1987 Phys. Lett, 124A 143
[4] Antonowicz M and Wojciechowski S R 1990 Constrained flows of integrable pdes and bi-Hamiltonian structure of Garnier system Phys. Lett. A to appear
[5] Yunbo Zeng and Yishen Li 1989 J. Math. Phys. 301679
[6] Yunbo Zeng and Yishen Li 1990 J. Phys. A: Math. Gen. 23 L89
[7] Yunbo Zeng, Taixi Xu and Yishen Li 1990 Phys. Lett. 144A 75
[8] Yunbo Zeng and Yishen Li 1990 Integrable Hamiltonian systems related to polynomial cigenvalue problem J. Maih. Phys. 3111
[9] Fordy A P 1991 Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries Proc. IWA Workshop Applications of Solitons ed P J Olver and D H Sattinger, to be published

